Theory - see the lecture No. 3 - Wessels theory

Lateral stability:

Lateral stability at small inclinations up to 8° to 15°. G is the centre of gravity of the ship and it does not change during inclination. The force (weight) of the whole ship acts on this point $G=V \cdot \gamma=V . p . g$. The centre of buoyancy of the submerged part is point D_{0} and displacement force acts on it. If the ship is inclined from the horizontal position a/ to position $b /$ the angle of heel is φ_{1}, point D_{0} inclines from its original position to D_{1}, which is the centre of buoyancy of the submerged part of the hull MWL_{1}.

A ship is stable when buoyancy D and the weight of the ship G exert an inclining moment and return the ship to its original horizontal position. The value of lateral stability (or the effect of the moment of stability) is expressed by arm h (the arm of stability: the larger it is, the more stable it is) and also the height of the intersection of the carrier of buoyancy force D with the vertical axis of the ship above the centre of gravity G $\left(M_{1}\right)$. As stated above, this is an imaginary centre point of the inclined ship called the metacentric point $\mathbf{M}_{\mathbf{1}}$ (metacentre: the higher it is, the more stable it is). In practice, metacentric height $k=\mathrm{M}_{1} G$ is used for static stability, which is the distance of the metacentre from the centre of gravity of the ship. i.e. the ship is stable when M_{1} lies above the centre of gravity of the ship G (i.e. $k>0$).

The size of stabilizing moment

$$
M_{\text {stabilizing }}=D \cdot h
$$

$$
M_{\text {stabilizing }}=D \cdot k \cdot \sin \varphi
$$

From the cross section we derive

$$
\overline{M G}=\overline{M D_{0}}+\overline{D_{0} K}-\overline{G K}
$$

$$
k=r_{0}+z_{v}-z_{G}
$$

Attwood's formula for the metacentric position, the metacentric radius
$r_{0}=\frac{I_{x}}{V}$;
the units are $[m]=\left[m^{4}\right] /\left[m^{3}\right]$.

I_{x} is area moment of inertia at the water plane at the longitudinal axis of symmetry x, V is the volume of the submerged part of the hull.

It is generally true that safe stability requires a large metacentric height. However, a ship with a high metacentre has hard stability (it vigorously reacts to maneuvering, has hard jerking movements which are unfavourable). Soft stability is found in sea ships with a metacentric height of $\mathrm{k}=0.6$ to 0.8 m . An indicator of hard or soft stability is the duration of inclination of the ship. If the inclination of a ship from one side to the other is less than 10 seconds, this is a very fast inclination and it has hard stability. These kinds of movements place great stress on the large and heavy driving machinery onboard.

For example:

River cargo ships: $\mathrm{k}=2-3 \mathrm{~m}$
Barges: k=2-15 m
Passenger ships: 0.5-2 m
Minimal value in practice: $\mathrm{k}=0.25 \mathrm{~m}$

Task:

Determine the lateral stability of a ferry. The shape of this ship is approximately rectangular with semicircular fronts - width B and length H.

The mass of ship and cargo is m
For simplicity, assume a prismatic shape of ship, i.e. the ship's sides are vertical.

1. Area monent of inertia at the longitudal axis of a ship x :

$$
I_{x}=\frac{B^{3}}{19}(16 . h+3 . \pi . B)
$$

2. Metacentric radius - see the theory

3. Centre of buoyancy force z_{v} :

Area at a surface level: $\quad A=B \cdot h+\pi \frac{B^{2}}{4}$
Volume of submerged part: cargo mass $m \Rightarrow$ volume of water displaced V
Due to the assumption of a prismatic shape of a ship $-z_{v}$ is approximately a half of the submerged depth

$$
V=A .2 . z_{V} \Rightarrow z_{V}
$$

4. Metacentric height \boldsymbol{k} - see the theory

$$
k=?
$$

The input values to the stutents tasks
When the student's number is StN :

mass	$m=50+(S t N * 0,2)$	[tonnes]
width	$B=6+(S t N * 0.1)[\mathrm{m}]$	
length	$H=20+(S t N * 0.1)$	$[\mathrm{m}]$
centre of gravity	$z_{G}=3+(S t N * 0.01)$	$[\mathrm{m}]$
centre of buoyance	$z_{v}=0,4+(S t N * 0.01)$	$[\mathrm{m}]$

